CONCEPTLASER

a GE Additive company

CL 100NB Nickel-based alloy

Nickel-based alloy powder (Alloy 718), chemical composition according to ASTM B 637 UNS 07718

With an appropriate approval* CL 100NB can be used for production of components for high-temperature applications.

28 **Ni** 58,69

CHEMICAL COMPOSITION

Component	Indicative value (%)	
Ni	50,0 - 55,0	
Cr	17,0 - 21,0	
Nb	4,75 – 5,50	
Мо	2,80 - 3,30	
Ti	0,65 - 1,15	
Al	0,20 - 0,80	
Со	0,0 - 1,0	
С	0,0 - 0,08	
Mn	0,00 - 0,35	
Si	0,00 - 0,35	
Р	0,000 - 0,015	
S	0,000 - 0,015	
В	0,000 - 0,006	
Cu	0 - 0,3	
Fe	Balance	

RANGE OF APPLICATION

With an appropriate approval* CL 100 NB can be used for production of parts for high-temperature applications. Typical applications are turbine construction (aviation or stationary turbines) or exhaust tracts within motor sports applications.

TECHNICAL DATA AFTER RECOMMENDED HEAT TREATMENT

	90° (horizontal)	45° (polar angle)	0° (upright)
Yield Strength R _{p0,2} ¹	1007 ± 11 N/mm ²	1047 ± 8 N/mm ²	951 ± 7 N/mm ²
Tensile Strength R _m ¹	1340 ± 12 N/mm ²	1351 ± 21 N/mm ²	1283 ± 20 N/mm ²
Elongation A ¹	16 ± 1 %	17 ± 2 %	15 ± 4 %
Young's Modulus ¹	approx. 200 MPa	approx. 200 MPa	approx. 200 MPa
Thermal Conductivity λ ²	approx. 12 W/mK	approx. 12 W/mK	approx. 12 W/mK
Coefficient of thermal Expansion (at rt) ²	approx. 13 · 10 ⁻⁶ K ⁻¹	approx. 13 · 10 ⁻⁶ K ⁻¹	approx. 13 · 10 ⁻⁶ K ⁻¹
	¹ Tensile test at 20°C according to DIN EN 50125 ² Specification according to the material manufacturer's data sheet.		

CL 100NB Nickel-based alloy

MICROSECTION

Test piece (x 20 magnification)

Test piece (x 20 magnification)

HEAT TREATMENT

Perform heat treatment under an argon atmosphere in two steps: At first solution annealing (980°C for one hour), afterwards allow the components to cool in the oven. In the second step aging (720°C for 8 hours). After this procedure allow the component to cool down to 620°C within two hours. Afterwards maintain this temperature for further 8 hours.

Concept Laser GmbH

An der Zeil 8 D 96215 Lichtenfels T: +49 (0) 95 71.1679 200 F: +49 (0) 95 71.1679 299 info@concept-laser.de

MICROSTRUCTURE

Components made from nickel-based alloy CL 100NB display a homogeneous, dense structure after they are manufactured by means of the metal laser melting process LaserCUSING®.

